On Zagreb indices of pseudo-regular graphs

Document Type: Original Article

Authors

Abstract

Properties of the Zagreb indices of pseudo-regular graphs are established, with emphasis on the Zagreb indices inequality. The relevance of the results obtained for the theory of nanomolecules is pointed out.

Graphical Abstract

On Zagreb indices of pseudo-regular graphs


  1.  R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, 2000.
  2. M. Karelson, Molecular Descriptors in QSAR/QSPR, Wiley-Interscience, New York, 2000.
  3. J. Devillers and A.T. Balaban (Eds.), Topological Indices and Related Descriptors in QSAR and QSPR, Gordon and Breach, Amsterdam, 1999. Journal of Mathematical Nano Science S. EDIZ JNMS
  4. M. V. Diudea, QSPR/QSAR Studies by Molecular Descriptors, Nova Sci. Publ., Huntington, NY, 2000.
  5. S. Bajaj, S. S. Sambi and S. Gupta, A. K. Madan, Model for Prediction of Anti-HIV Activity of 2-Pyridinone Derivatives Using Novel Topological Descriptor ,QSAR Comb. Sci., 25 (2006), 813-823.
  6. S. Ediz, The augmented eccentric connectivity index of an infinite class of nanostar dendrimers, Optoelectron. Adv. Mater.-Rapid Comm., 4(12) (2010), 2216-2217.
  7. S. Iijima, Helical microtubules of graphitic carbon. Nature, 354 (1991), 56-58.
  8. M. V. Diudea and A. Graovac, Generation and graph-theoretical properties of C4-tori, MATCH Commun. Math. Comput. Chem., 44 (2001), 93-102.
  9. M. V. Diudea and I. Silaghi-Dumitrescu, B. Parv, Toranes versus torenes, MATCH Commun. Math. Comput. Chem., 44 (2001), 117-133.
  10. M. V. Diudea and P.E. John, Covering polyhedral tori, MATCH Commun. Math. Comput. Chem., 44 (2001), 103-116.
  11. M. V. Diudea, Graphenes from 4-valent tori, Bull. Chem. Soc. Jpn., 75 (2002), 487-492.
  12. M. V. Diudea, Hosoya polynomial in tori, MATCH Commun. Math. Comput. Chem., 45 (2002), 109-122.
  13. M. V. Diudea, M. Stefu, B. Parv and P.E. John, Wiener index of armchair polyhex nanotubes, Croat. Chem. Acta, 77 (2004), 111-115.
  14. M. Diudea and M. Stefu, Wiener index of C C4 8 nanotubes, MATCH Commun. Math. Comput. Chem., 50 (2004), 133-144.
  15.  A. R. Ashrafi, M. Saheli and M. Ghorbani, The eccentric connectivity index of nanotubes and nanotori, J. Comput. Appl. Math., 235(16) (2011), 4561-4566.
  16. S. Ediz, The Ediz eccentric connectivity index of nanotubes and nanotori, Optoelectron. Adv.Mater.R-C, 4(11), (2010), 1847-1848.
  17. A. R. Ashrafi, T. Došlic and M. Saheli, The eccentric connectivity index of TUC4C8(R) nanotubes, MATCH Commun. Math. Comput. Chem., 65 (2011), 221–230.
  18. M. Saheli and A.R. Ashrafi, The eccentric connectivity index of armchair polyhex nanotubes, Macedonian Journal of Chemistry and Chemical Engineering, 29 (2010), 71-75.

Volume 1, 1-2
Winter and Spring 2011
Pages 1-12
  • Receive Date: 22 January 2011
  • Revise Date: 20 February 2011
  • Accept Date: 22 March 2011