Relations among the edge detour polynomials in nanotubes

Document Type: Original Article

Authors

1 Department of Mathematics, Islamic Azad University Central Tehran branch, Tehran, Iran

2 Mathematics and Informatics Research Group, ACECR, Tarbiat Modares University

3 Department of Mathematics, Payame Noor University, 19395-4797, Tehran, Iran

4 Islamic Azad University Branch of Azadshaher, Azadshaher, Iran

Abstract

The edge detour polynomials were recently introduced for computing the edge detour indices. In this paper, we find relations among edge detour polynomials and then, edge detour indices, by using graph theoretical techniques in molecular graphs. These relations are computed for the nanotubes TUC4C8S(S), TUC4C8S(R) and armchair polyhex nanotubes.

Graphical Abstract

Relations among the edge detour polynomials in nanotubes

Keywords


1. H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc., 69 (1997) 17-20.

2. A. A. Dobrynin, R. Entringer and I. Gutman, Wiener index for trees: theory and applications, Acta Appl. Math., 66 (3) (2001) 211–249.

3. F. Harary, Graph Theory, Addison-Wesley, Reading, Massachusetts, 1969.

4. M. V. Diudea, G. Katona, I. Lukovitz and N. Trinajstic, Detour and Cluj-Detour Indices, Croat. Chem. Acta, 71 (1998) 459-471.

5. P. E. John, Ueber die Berechnung des Wiener index fuer ausgewaehlte Deltadimensionale Gitterstrukturen, MATCH Commun. Math. Comput. Chem., 32 (1995) 207-219.

6. R. Jalal Shahkoohi, O. Khormali and A. Mahmiani, The polynomial of detour index for a graph, World Applied Sciences Journal, 15 (10) (2011) 1473-1483.

7. A. Mahmiani, O. Khormali and A. Iranmanesh, The edge versions of detour index, MATCH Commun. Math. Comput. Chem., 62 (2) (2009) 419-431.

8. Sh. Safari Sabet, A. Mahmiani, O. Khormali, M. Farmani and Z. Bagheri, On the edge detour index polynomials, Middle-East Journal of Scientific Research, 10 (4) (2011) 539-548.

9. M. V. Diudea and Cs. L. Nagy, Periodic Nanostructures, Springer, 2007.