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ABSTRACT. Fullerenes are carbon-cage molecules in which a number of carbon atoms are 
bonded in a nearly spherical configuration. The augmented eccentric connectivity index of 
graph G is defined as 1

( )
( ) ( ) ( )


A

u V G
ξ G M u ε u  where ( ) u  is defined as the length of a 

maximal path connecting u to another vertex of G and M(u) denotes the product of degrees 
of all neighbors of vertex u. In the present paper, we compute the augmented eccentric 
connectivity index of two classes of fullerenes C12n+2 and C20n+40. 
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1. INTRODUCTION  

Throughout this article G denotes a simple connected graph. We denote the vertex and 
the edge set of G by V(G) and E(G), respectively. For two vertices u and v of V(G), we 
define their distance d(u,v) as the length of any shortest path connecting u and v in G. 
The eccentricity ( )u  of the vertex u of G is the distance from u to any vertex farthest 
away from it in G, i.e., ( ) max{ ( , ) | ( )}u d u v v V G   . The maximum eccentricity over all 
vertices of G is called the diameter of G and denoted by D(G); the minimum 
eccentricity among the vertices of G is called the radius of G and denoted by r(G).  

A molecular graph is a simple connected graph such that its vertices 
correspond to the atoms and the edges to the bonds. 

A fullerene is a cubic carbon molecule in which each carbon atom is chemically 
bonded to three other carbon atoms and they are arranged on a sphere in pentagons 
and hexagons. Fullerene molecule was discovered experimentally in 1985 [2,13]. 
Since then, fullerenes have attracted the interest of scientists in many fields all over 
the world. The molecular graph of a fullerene (or a fullerene graph) is a cubic planar 
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3-connected graph with pentagonal and hexagonal faces. Such graphs are suitable 
models for fullerene molecules: carbon atoms are represented by vertices of the 
graph, whereas the edges represent bonds between adjacent atoms. Considering the 
molecular graph of fullerenes many properties of these nanomaterials can be 
investigated using mathematical tools and methods. 

A topological index is a numerical value associated with chemical constitution 
purporting for correlation of chemical structure with various physical properties, 
chemical reactivity or biological activity. The augmented eccentric connectivity index 

( )A ξ G  of a graph G is defined as 1
( )

( ) ( ) ( )


A
u V G

ξ G M u ε u , where M(u) denotes the 

product of degrees of all neighbors of the vertex u. It was introduced in [1] concerned 
with various modifications of some eccentric-based topological indices. Interested 
readers are encouraged to consult references [3–11] for more mathematical and chemical 
properties of eccentric-based indices of some nanostructures. In the present paper, we 
compute the augmented eccentric connectivity index of two classes of fullerene graphs C12n+2 
and C20n+40. 
 

2. VERTEX-TRANSITIVE GRAPHS 

A bijection α  on V(G) is called an automorphism of graph G if it preserves E(G). In the 
other words,   is an automorphism if for each edge e = uv of G, ( ) ( ) ( )α e α u α v  is an 
edge of G. Assume that ( ) { :   is bijection}Aut G f f V V | . Then ( )Aut G  forms a 
group under the composition of mappings. ( )Aut G  acts transitively on V(G) if for any 
vertices u and v in V(G) there exists ( )α Aut G  such that ( )α u v . 
Lemma 1. Suppose G is a k-regular graph and 1 2, , , tA A A  are the orbits of ( )Aut G  

under its natural action on V(G) and i ix A , for 1 i t  . Then 



  1

1
( ) | ( ) .|

t
A k

i i
i

ξ G k A ε x  

In particular, if G is vertex-transitive, then  1( ) | ( )| ( )kAξ G k V G r G  for somek . 
Proof. It is easy to see that if vertices u and v are in the same orbit, then there is an 
automorphism α such that α(u)=v. Choose a vertex x such that ( ) ( , )ε u d u x , since it is 
onto, for every vertex y there exists a vertex w such that y =α(w). Thus  

d(v, y)= d(α(u), α(w))= d(u,w). 
It follows that 

ɛ(v)=max{d(v,y) | y in V(G)} = max{d(u,w)| w in V(G)}= ( )ε u . 
So the vertices of a given orbit have the same eccentricities. On the other hand, it is 
known that the vertices of a given orbit have equal degrees. In the case that G is 
vertex-transitive, it is a k–regular graph, for some k and  1( ) | ( )| ( )A kξ G k V G r G . This 
completes our proof. 

It is known that the molecular graph of a polyhex nanotorus, T[p,q], (Figure 1) 
is vertex-transitive [1]. Therefore the following theorem follows from Lemma 1. 
Theorem 2. ( [ , ]) 9 /[ / 2] .A ξ T p q pq p q  
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Proof. As it is easily seen in Figure 1, we have that |V(T[p,q])| = pq. Since T[p, q] is 
vertex-transitive, it follows from Lemma 1 that ( [ , ]) 9 /[ /2]A ξ T p q pq p q  due to the 
fact that eccentricity of each vertex of T[p,q] is [ /2]p q . 

1

2

q

2 p

.

.

.

 
 

Figure 1. 2-dimensional lattice for T[p,q]. 
3. AUGMENTED ECCENTRIC CONNECTIVITY INDEX OF TWO CLASSES OF FULLERENES 

The goal of this section is to compute the augmented eccentric connectivity index of 
two infinite classes of fullerenes, namely C12n+2 and C20n+40.  

At first consider an infinite class of fullerene with exactly 12n + 2 vertices and 
18n + 3 edges, depicted in Figure 2. In Table 1, the eccentricity of every vertex of C12n+2 
fullerenes is computed for 2 ≤ n ≤ 9.  

Table 1. Some exceptional cases of C12n+2 fullerenes. 

Fullerenes Augmented eccentric connectivity index for 2 ≤ n ≤ 9 
C26 9(72/5+1) 
C38 9(114/7) 
C50 9(36/7 + 102/8 + 12/9) 
C62 9(72/8 + 72/9 + 42/10) 
C74 9(36/8 + 72/9 + 54/10 + 36/11 + 24/12) 
C86 9(72/9 + 54/10 + 36/11 + 36/12 + 36/13 + 24/14) 
C98 9(12/9 + 18/10 + 12/11 + 12/12 + 12/13 + 12/14 + 12/15 + 8/16) 
C110 9(18/10 + 12/11 + 12/12 + 12/13 + 12/14 + 12/15 + 12/16 + 

12/17 + 8/18) 
 

A general formula for the augmented eccentric connectivity index of C12n+2, for n ≥ 10 
is as follows: 
Theorem 3. 






 


1

12 2
1

270 1( ) 324 .
n

A
n

i
ξ C

n n i
 

Proof. By Figure 2 and by using GAP [12] software, one can see that there are three 
types of vertices of fullerene graph C12n+2. These are the vertices of the central and 

Jo
u

rn
al

 o
f 

M
at

h
em

at
ic

al
 N

an
o 

S
ci

en
ce

 



SHARAFDINI                                                                                                                                       JMNS 
 

16 
 

outer pentagons and other vertices of C12n+2. By computing the eccentricity of these 
vertices we have the following table: 

 

Vertices Eccentricity Number 
The type 1 of vertices 
The type 2 of vertices 

Other vertices 

2n 
n 

n+i (1 ≤ i ≤ n-1) 

8 
6 

12 
 
By using these calculations and Figure 2, the Theorem is proved.  
 

 
Figure 2. The molecular graph of the fullerene C12n+2 for n = 4. 

 
Consider now an in infinite class of fullerene with exactly 20n + 40 vertices and 

30n + 60 edges, depicted in Figure 3. In Table 2, the eccentricity of vertices of C20n+40 
fullerenes are computed for 1 ≤ n ≤10.  

 
Table 2. Some exceptional cases of C20n+40 fullerenes. 

Fullerenes Augmented eccentric connectivity index for 1 ≤ n ≤ 10 
C60 180 
C80 9(240/11) 
C100 9(60/11+240/12) 
C120 9(120/12+210/13+30/14) 
C140 9(60/12+120/13+180/14+30/15+30/16) 
C160 9(120/13+120/14+120/15+60/16+30/17+30/18) 
C180 9(60/13+120/14+120/15+90/16+60/17+60/18+30/19) 
C200 9(60/14+120/15+90/16+60/17+90/18+60/19+60/20+60/21+30/22+30/23) 

C220 
9(120/15+90/16+60/17+90/18+60/19+60/20+60/21+60/22+60/23+30/24 
+30/25) 

C240 
9(60/25+90/16+20/17+90/18+60/19+60/20+60/21+60/22+60/23+60/24 
+60/25+30/26+30/27) 
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A general formula for the augmented eccentric connectivity index of C20n+40, for n ≥ 11, 
is as follows: 
Theorem 4. 





 

   20 40
0

270(4 11) 1( ) 540 .
(2 5)(2 6) 4

n
A

n
i

nξ C
n n n i  

Proof. Similar to proof of Theorem 3, by using Figure 3, one can see that there are 
three types of vertices of fullerene graph C20n+40. These are the vertices of the central 
and outer pentagons and other vertices of C20n+40. By computing the eccentricity of 
these vertices we have the following table: 

 
Vertices Eccentricity Number 

The type 1 of vertices 
The type 2 of vertices 

Other vertices 

2n + 6 
2n + 5 

n + 4 + i (0≤ i ≤ n) 

10 
10 
20 

 
By using these calculations and Figure 3, the theorem is proved. 

 
Figure 3. The molecular graph of the fullerene C20n+40 for n = 3. 
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