Majidi, R. (2015). Band gap modulation of graphyne: A density functional theory study. Journal of Mathematical Nanoscience, 5(1-2), 11-22. doi: 10.22061/jmns.2015.486

Roya Majidi. "Band gap modulation of graphyne: A density functional theory study". Journal of Mathematical Nanoscience, 5, 1-2, 2015, 11-22. doi: 10.22061/jmns.2015.486

Majidi, R. (2015). 'Band gap modulation of graphyne: A density functional theory study', Journal of Mathematical Nanoscience, 5(1-2), pp. 11-22. doi: 10.22061/jmns.2015.486

Majidi, R. Band gap modulation of graphyne: A density functional theory study. Journal of Mathematical Nanoscience, 2015; 5(1-2): 11-22. doi: 10.22061/jmns.2015.486

Band gap modulation of graphyne: A density functional theory study

^{}Department of Physics, Faculty of Science, Shahid Rajaee Teacher Training University, Tehran, 16785 – 136, I R. Iran

Receive Date: 05 January 2015,
Revise Date: 11 April 2015,
Accept Date: 12 April 2016

Abstract

Modifying the electronic properties of graphyne via doping, organic molecule adsorption, and chemical functionalization was reviewed. The electronic band structure and density of states were studied by using density functional theory. The α-graphyne was considered due to its analogous to graphene. The results indicate α-graphyne is a semimetal with zero band gap. It was shown that doping, adsorbing organic molecule, and chemical functionalization can open a band gap in α-graphyne. The size of the band gap was dependent on the concentration of impurity, adsorbed TCNE or CCl_{2} molecules. The mentioned methods provide the possibility of opening an energy band gap in α-graphyne as required for fabricating high-performance nanoelectronic devices based on graphyne.

Graphical Abstract

References

[1] M.S. Dresselhaus, G. Dresselhaus, and P. Avouris, Carbon Nanotubes: Synthesis, Structure, Properties, and Applications, Springer-Verlag Berlin Heidelberg (2001). [2] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Electric Field Effect in Atomatically Thin Carbon Films, Science 306 (2004) 666. [3] A.K. Geim, and K.S. Novoselov, The Rise of Grapheen, Nat. Mater. 6 (2007) 183. [4] A.K. Geim, Graphene Status and Prospects, Science 324 (2009) 1530. [5] S. Jalili, and R. Majidi, The Effect of Gas Adsorption on Carbon Nanotubes Properties, J. Comput. Theor. Nanosci. 3 (2006) 664. [6] A.L. Ivanovskii, Graphynes and Graphdyines, Progress in Solid State Chemistry, 41 (2013) 1. [7] R.H. Baughman, H. Eckhardt, and M. Kertesz, Structure-Property Predictions for New Planar Forms of Carbon: Layered Phases Coating sp2 and sp Atoms, J. Chem. Phys. 87 (1987) 6687. [8] S.W. Cranford, and M.J. Buehler, Mechanical Properties of Graphyne, Carbon 49 (2011) 4111. [9] B.G. Kim, and H.J. Choi, Graphyne: Hexagonal Network of Carbon with Versatile Dirac Cones, Phys. Rev. B 86 (2012) 115435. [10] D. Malko, C. Neiss, F. Viñes, and A. Görling, Completition for Graphene: Graphynes with Direction-Dependent Dirac Cones, Phys. Rev. Lett. 108 (2012) 086804. [11] D. Haberer, D.V. Vyalikh, S. Taioli, B. Dora, M. Farjam, J. Fink, D. Marchenko, T. Pichler, K. Ziegler, S. Simonucci, M.S. Dresselhaus, M. Knupfer, B. Büchner, and A. Grüneis, Tunable Band Gap in Hydrogenated Quasi-Free-Standing Graphene, Nano Lett. 10 (2010) 3360. [12] J. Nilsson, and A.C. Neto, Impurities in a Biased Graphene Bilayer, Phys. Rev. Lett. 98 (2007) 126801. [13] T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg, Controlling the Electronic Structure of Bilayer Graphene, Science 313 (2006) 951. [14] B.R. Matis, J.S. Burgess, F. Bulat, A.L. Friedman, B.H. Houston, and J.W. Baldwin, Surface Doping and Band Gap Tunability in Hydrogenated Graphene, ACS Nano 6 (2012) 17.

[15] P. Shemella, and S.K. Nayak, Electronic Structure and Band-Gap Modulation of Graphene via Substrate Surface Chemistry, Appl. Phys. Lett. 94 (2009) 032101.

[16] K. Novoselov, Graphene: Mind the Gap, Nature Matter 6 (2007) 720. [17] X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, Chemically Derived, Ultrasmooth Graphene Nanoribbon emiconductors, Science 319 (2008) 1229. [18] Y.H. Lu, W. Chen, Y.P. Feng, and P.M. He, Tuning the Electronic Structure of Graphene by an Organic Molecule, J. Phys. Chem. B 113 (2009) 2. [19] M. Chi, and Y-P, Zhao, First principle study of the interaction and charge transfer between graphene and organic molecules, Comp. Mat. Sci. 56 (2012) 79. [20] X. Wang, X. Li, L. Zhang, Y. Yoon, P.K. Weber, H. Wang, J. Guo, and H. Dai, N-Doping of Graphene Through Electrothermal Reactions with Ammonia, Science (2009) 768. [21] T.B. Martins, R.H. Miwa, A.J.R. da Silva, and A. Fazzio, Electronic and Transport Properties of Boron-Doped Graphene Nanoribbons, Phys. Rev. Lett. 98 (2007) 196803(1-4). [22] D.C. Elias, R.R Nair, T.M.G. Mohiuddin, S.V. Morozov, P. Blake, M.P. Halsall, A.C. Ferrari, D.W. Boukhvalov, M.I. Katsnelson, A.K. Geim, and K.S. Novoselov, Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane, Science 323 (2009) 610. [23] R.R. Nair, W. Ren, R. Jalil, I. Riaz, V.G. Kravets, L. Britnell, V.G. Kravets, L. Britnell, P. Blake, F. Schedin, A.V. Mayorov, S. Yuan, M.I. Katsnelson, H.M. Cheng, W. Strupinski, L.G. Bulusheva, K.S. Novoselov, and A.K. Geim, Fluorographene: A Two-Dimensional Counterpart of Teflon, Small 6 (2010) 2877. [24] L. Wang, Y.Y. Sun, K. Lee, D. West, Z.F. Chen, J.J. Zhao, and S.B. Zhang, Stability of Graphene Oxide Phases from First-Principles Calculations, Phys. Rev. B 82 (2010) 161406. [25] Z. Xu, and K. Xue, Engineering Graphene by Oxidation: A First-Principles Study, Nanotechnol. 21 (2010) 045704. [26] J-X. Zhao, H-X. Wang, B. Gao, X-G. Wang, Q-H. Cai, and X-Z. Wang, Chemical Functionalization of Graphene via Aryne Cycloaddition: A Theoretical Study, J. Mol. Model, 18 (2012) 2868.

[27] T.H. Wang, Y.F. Zhu, and Q. Jiang, Bandgap Opening of Bilayer Graphene by Dual Doping from Organic Molecule and Substrate, J. Phys. Chem. C 117 (2013) 12873.

[28] M. Farjam, and R. Rafii-Tabar, Bandgap Opening of Bilayer Graphene by Dual Doping from Organic Molecule and Substrate, Phys. Rev. B. 80 (2009) 167401 (1-3). [29] M. Mohr, K. Papageelis, J. Maultzsch, and C. Thomsen, Two-Dimensional Electronic and Vibrational Band Structure of Uniaxially Strained Graphene from ab initio Calculations, Phys. Rev. B 80 (2009) 205410 (1-4). [30] S.M. Choi, S.H. Jhi, and Y.W. Son, Effects of Strain on Electronic Properties of Graphene, Phys. Rev. B 81 (2010) 081407 (1-4). [31] R. Majidi, and K. Ghafoori Tabrizi, Electronic Properties of Defect-Free and Defective Bilayer Graphene in an Electric Field, Fuller. Nanotub. Car. N. 19 (2011) 532. [32] T. Ozaki, H. Kino, J. Yu, M.J, Han, N. Kobayashi, and M. Ohfuti, et al. (2011) Users manual of OpenMX version 3.6. http://www.openmx-square.org. [33] J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77 (1996) 3865. [34] S. Grimme, Band Gap Modulation of Graphyne via Chemical Functionalization: A Density Functional Theory Study, J. Comput. Chem. 27 (2006) 1787. [35] R. Majidi, Effect of Doping on the Electronic Properties of Graphyne, Nano 8 (2013) 1350060. [36] A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, and A.K. Geim, The Electronic Properties of Graphene, Rev. Mod. Phys. 81 (2009) 109. [37] S.B. Trickey, F. Muller-Plathe, G.H.F. Diercksen, and J.C. Boettger, Interplanar Binding and Lattice Relaxation in a Graphite Dilayer, Phys. Rev. B 45 (1992) 4460. [38] R. Majidi, and A.R. Karami, Electronic Properties of Bilayer and Trilayer Graphyne in the Presence of Electric Field, Struct. Chem. 25 (2014) 853. [39] R. Majidi, and A.R. Karami, A Biosensor for Hydrogen Peroxide Detection based on Electronic Properties of Carbon Nanotubes, Mol. Phys. 111 (2013) 3194. [40] R. Majidi, A.R. Karami, Band Gap Opening in α-Graphyne by Adsorption of Oranic Molecule, Physica E 63 (2014) 264. [41] R. Majidi, and A.R. Karami, Band Gap Modulation of Graphene and Graphyen via Tetracyanoethylene Adsorption, Studia. UBB. Chemia. 1 (2016) 177. [42] R. Majidi, Band Gap Modulation of Graphyne via Chemical Functionalization: A Density Functional Theory Study, Can. J. Chem. 94 (2016) 229