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ABSTRACT. A fullerene is a molecule composed of carbon in the shape of a hollow sphere, 
ellipsoid, tube, and many other forms. The spherical ones are called buckyballs and they look 
like the balls used in football game. The first stable cluster of fullerenes was discovered by 
Kroto and his co-authors who received the Nobel Prize. In this paper, we introduced some 
classes of stable fullerene graphs.  
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1. INTRODUCTION  

In graph theory a fullerene is a three connected cubic graph whose faces are 
pentagons and hexagons satisfying in Euler’s formula. The first and the most stable 
fullerene C60, namely is composed of 60 carbon atoms, 90 edges, 12 pentagons and 20 
hexagons, see Figure 1. It is discovered in 1985 by Kroto et al. [11,12] who received 
the Nobel Prize for this discovery. It is not difficult to prove that the other classes of 
fullerenes have 12 pentagons, too. In other words, by using Euler’s theorem, a 
fullerene on n vertices has exactly 12 pentagons and n/2  10 hexagons while n is a 
natural number equal or greater than 20 and n  22, for more details about 
mathematics of fullerene graphs see Refs [2,4,8-10] as well as [13-16]. In the structure 
of C60 fullerene, all pentagons are isolated which introduce a new class of fullerenes 
called IPR (Isolated Pentagon Rules) fullerene. IPR fullerenes are fullerenes where no 
two pentagons share an edge. Among all classes of fullerenes, the IPR fullerenes have 
the special interest as they tend to be more stable [7]. Here, we introduce some 
conditions that a fullerene is stable. 

https://en.wikipedia.org/wiki/Molecule
https://en.wikipedia.org/wiki/Sphere
https://en.wikipedia.org/wiki/Association_football
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Figure 1. 2-D graph of fullerene C60. 

There is a list of groups that can act as a symmetry group of a convex polyhedron 
[3,6]. They can be divided into icosahedral, octahedral, tetrahedral, dihedral, cyclic 
and others. Symmetry of fullerenes has been studied deeply. The possible symmetry 
groups G for fullerenes are 28 point groups [5]. Babić, Klein and Sah in [1] classified all 
fullerenes up to 70 vertices with respect to their symmetry group. Fowler and 
Manolopoulos [6] found symmetry groups of all fullerenes with up to 100 vertices. For 
each symmetry group G they found the smallest G -fullerene and the smallest G -
fullerene obeying IPR (isolated pentagon rule). They described how to create a new 
fullerene with the same symmetry group having more hexagonal faces and obeying 
IPR once a fullerene is given. 

The dual of a fullerene is the plane graph obtained by substituting the roles of 
vertices and faces: the vertex set of the dual graph is the set of faces of the original 
graph and two vertices in the dual graph are adjacent if and only if the two faces share 
an edge in the original graph. The dual of a fullerene with n vertices is a plane graph 
where every face is a triangle. This operation is called triangulation. The triangulation 
on a fullerene provides one which contains 12 vertices of degree 5 and n/2 - 10 
vertices of degree 6. 

The Stellisation St(G) of the plane graph G, adds a vertex in the center of each 
face of a planar graph G, and connects the new vertex with each boundary vertex of 
the corresponding face. Notice that this operation is also a triangulation. 

Truncation, Tr(G) of a plane graph G is an operation that adds two new vertices 
on each edge and then removes the vertices of G. Two vertices are adjacent if they are 
added to the same edge of G or they belong to two successive edges incident to the 
same vertex of G. The truncation of a polyhedron cuts off one third of each edge at 
each of both ends. 
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Let F be a fullerene graph on n vertices. A leapfrog transform Fl of F is a graph on 3n 
vertices obtained by truncating the dual of F. Hence, Fl= Du(St(F)) = Tr(Du(F)), where 
Du(F) denotes the dual of F. It is easy to check that Fl itself is a fullerene graph. We say 
that Fl is a leapfrog fullerene obtained from F and write Fl = Le(F). In other words, for a 
given fullerene Fn put an extra vertex into the centre of each face of Fn. Then connect 
these new vertices with all the vertices surrounding the corresponding face. Then the 
dual polyhedron is again a fullerene having 3n vertices 12 pentagonal and (3n/2)-10 
hexagonal faces. A sequence of stellation dualization rotates the parent s-gonal faces 
by π/s. Leapfrog operation is illustrated, for pentagonal and hexagonal faces, in 
Figures 2,3. The leapfrog operation of a fullerene graph (see Figures 4,5) is usually 
used for construction of bigger and isolated pentagon fullerenes. It should be noted 
that for a fullerene graph F, Aut(F) = Aut(Le(F)). 

 
Figure 2. Leapfrog of a pentagonal face. 

 

 

Figure 3. Leapfrog of a hexagonal face. 

 

 

Figure 4. Leapfrog of fullerene C20. 
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C34 fullerene Le(C34) = C102 
 

Figure 5. The fullerene C34 and Le(C102). 
 
This means that the leapfrog of an icosahedral fullerene is also icosahedral. It is a well-
known fact that among all fullerene graphs, icosahedral fullerenes are more stable. 
Hence, if we have an icosahedral fullerene, then we can construct an infinite family of 
stable fullerenes by using leapfrog operation. We can also apply our method to 
construct big stable fullerenes with icosahedral symmetries. For example, Le2(C60) is a 
stable fullerene with 540 vertices and with an icosahedral symmetry, see Figure 6. 

 

Figure 6. Fullerene C540 with icosahedral symmetry. 
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In Quantum Chemistry, the early Hückel theory calculates the levels of -electron 
energy of the molecular orbitals, in conjugated hydrocarbons, as roots of the 
characteristic polynomial: 

( , ) det[ I A( )]P G x x G  . 

In the above, I is the idendity matrix of a pertinent order and A the adjacency 
matrix of the graph G. The characteristic polynomial is involved in the evaluation of 
topological resonance energy TRE, the topological effect on molecular orbitals TEMO, 
the aromatic sextet theory, the Kekulé structure count, etc. The nullity of a molecular 
graph is the number of zeros of the characteristic polynomial.  

Since the fullerene graphs are not bipartite, the smallest eigenvalue is greater 
than -3. Some chemists believe that a necessary condition for the physical existence of 
a fullerene is that the graph should have exactly half its eigenvalues positive.  
Lemma 1 [7]. If X is a cubic planar graph with leapfrog graph Le(X), then Le(X) has at 
most half of its eigenvalues positive and at most half of its eigenvalues negative. 
Theorem 2 [7]. If X is a cubic planar graph, then its leapfrog Le(X) has exactly half of 
its eigenvalues negative. If, in addition, X has a face of length not divisible by three, 
then its leapfrog Le(X) also has exactly half of its eigenvalues positive. 

Let F be a fullerene graph. According to Theorem 2, the leapfrog graph Le(F) 
has exactly half of its eigenvalues negative. Further, since F has a face of length not 
divisible by three (it has 12 pentagons), then its leapfrog Le(F) also has exactly half of 
its eigenvalues positive. This means that leapfrog fullerenes are more stable. 

Corollary 3. Let F be a fullerene graph, then the nullity of Le(F) is an even integer 
number. 

Proof. Let the number of positive eigenvalues of F be k (k ≤ n/2), then according to 
Theorem 2, Le(F) has 2k non-zero eigenvalues. This means that the nullity of Le(F) is 
n-2k and the proof is completed. 

It is well-known that a molecular graph with nullity zero is more stable. In 
other words, leapfrog fullerenes with nullity zero are more stable.  

Example 1. Consider the polyhedral graph C32 depicted in Figure 7. By a direct 

computation, one can see that the spectrum of F is as follows:  

  
  
 

Spec F
3 2.56 2 1.56 1 0 1 1.56 2 2.56 3

( ) .
1 3 2 3 4 6 4 3 2 3 1

 

The nullity of this polyhedral graph is 6. 
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4. Conclusions 

Fullerenes are spherical carbon molecules that can be modeled as cubic plane graphs 
where all faces are pentagons or hexagons. Euler's formula implies that a fullerene 
with n vertices contains exactly 12 pentagons and n/2 - 10 hexagons. A rich 
mathematics of cubic planar graphs and fullerene graphs has developed since they 
were considered by Goldberg, Coxeter, and others and many mathematical properties 
of fullerenes have established simple and beautiful solutions. Yet many remarkable 
chemical and mathematical problems in the field remain unsolved. The stability of 
fullerenes is very important factor that in this paper, we introduced some 
mathematical properties for it. 
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Figure 7. Fullerene graph C32. 
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