A survey on Hosoya polynomial of some nano tubes and nano tori

Document Type: Original Article

Author

University of Kashan

Abstract

The Hosoya polynomial of a molecular graph G is defined as H(G,x)=∑u,vϵV(G)xd(u,v),  where the sum is over all unordered pairs {u,v} of distinct vertices in G. In this paper we arrange the main result about the Hosoya polynomial of armchair  polyhex, Zig-Zag, TUC4C8(R/S) nanotubes and nanotorus according to Ref.s [23-27].

Graphical Abstract

A survey on Hosoya polynomial of some nano tubes and nano tori

Keywords


[1] Oregan, Brian, and M. Grfitzeli. A low-cost, high-efficiency solar cell based on dye-sensitized. nature, 353.6346 (1991) 737-740.
[2] A. A. Dobrynin, R. Entringer, I. Gutman, Wiener index of trees: theory and applications,. Acta Appl. Math. 66 (2001) 211–249.

[3] A.A. Dobrynin, I. Gutman, S. Klavzar, P. Zigert, Wiener index of hexagonal systems, Acta Appl. Math. 72 (3) (2002) 247–294.
[4] F. Buckley and F. Harary, Distance in graphs, Addison-Wesley, Longman, 1990.
[5] H. Hosoya, On some counting polynomials in chemistry, Discrete Appl. Math. 19 (1988) 239-257.
[6] M. Lepović, I. Gutman, A collective property of trees and chemical trees, J. Chem. Inf. Comput. Sci. 38 (1998) 823–826.
[7] I. Gutman, Y. Zhang, M. Dehmer, A. Ilić, Altenburg, Wiener, and Hosoya polynomials, in: I. Gutman, B. Furtula (Eds.), Distance in Molecular Graphs–Theory, Univ. Kragujevac, Kragujevac, 2012, pp. 49–70.
[8] H. Shabani, A. R. Ashrafi, I. Gutman and B. Furtula, On extensions of Wiener index, MATCH Commun. Math. Comput. Chem. 69 (2013) 589596.
[9] H. Wiener, Structural determination of the paraffin boiling points, J. Am. Chem. Soc. 69 (1947) 17–20.
[10] D. J. Klein, I. Lukovits, I. Gutman, On the definition of the hyper–Wiener index for cycle–containing structures, J. Chem. Inf. Comput. Sci. 35 (1995) 50–52.
[11] S. S. Tratch, M. I. Stankevich, N. S. Zefirov, Combinatorial models and algorithms in chemistry. The expanded Wiener number – A novel topological index, J. Comput. Chem. 11 (1990) 899–908.
[12] M. V. Diudea, M. Stefu, B. Pârv, P. E. John, Wiener index of armchair polyhex nanotubes, Croat. Chem. Acta 77 (2004) 111–115.
[13] Diudea, M. V., Parv, B., Kirby, E. C. Azulenic tori. MATCH - Commun. Math. Comput. Chem., 47 (2003) 53-70.
[14] M.V. Diudea, Toroidal graphenes from 4-valent tori, Bull. Chem. Soc. Jpn. 75 (2002) 487-492.
[15] M. V. Diudea, Hosoya polynomial in tori, MATCH Commun. Math. Comput. Chem. 45 (2002) 109–122.
[16] M. V. Diudea, P. E. John, Covering polyhedral tori, MATCH Commun. Math. Comput. Chem. 44 (2001) 103-116.

[17] M. V. Diudea, E. C. Kirby, The energetic stability of tori and single wall tubes. Fullerene Sci. Technol. 9 (2001) 445-465.
[18] S. Yousefi, A. R. Ashrafi, An Exact Expression for the. Wiener Index of a TUC4C8(R) Nanotorus, J. Math. Chem. 42 (2007) 1031-1039.
[19] S. Yousefi, A. R. Ashrafi, An algorithm for constructing Wiener matrix of TUC4C8(R) nanotubes,Curr. Nanosci. 4 (2008) 161-165.
[20] A. R. Ashrafi, S. Yousefi, An exact expression for the Wiener index of a polyhex nanotubes, Nanoscale Res. Lett. 2 (2007) 202-206.
[21] S. Yousefi, A.R. Ashrafi, Computing the Wiener Index of a TUC4C8(S) Nanotorus, MATCH Commun. Math. Comput. Chem. 56 (2006) 169-178.
[22] A. R. Ashrafi, S. Yousefi, Computing the Wiener index of a TUC4C8(S) nanotorus, MATCH Commun. Math. Comput. Chem. 57 (2007) 403-410.
[23] H. Shabani, A. R. Ashrafi. Applications of The Matrix Package Matlab in Computing The Hosoya Polynomial of Zig-Zag Nanotubes. Digest. J. Nanomater. Bios 4.3 (2009) 423-428.
[24] A. R. Ashrafi, H. Shabani. An algorithm for computing Hosoya polynomial of TUC4C8 (R) nanotubes. OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS 3.4 (2009) 356-359.
[25] A. R. Ashrafi, H. Shabani. The Hosoya Polynomial of TUC4C8 (S) Nanotubes. Digest. J. Nanomater. Bios 4.3 (2009) 453-457.
[26] A. R. Ashrafi, H. Shabani. A new algorithm for computing Hosoya polynomial of TUC4C8 (R/S) nanotorus. OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS 3.12 (2009) 1309-1314.
[27] H. Shabani, A. R. Ashrafi. Applications of the matrix package MATLAB in computing the wiener polynomial of armchair polyhex nanotubes and nanotori. Journal of Computational and Theoretical Nanoscience 7.6 (2010) 1143-1146.


Volume 5, 1-2
Summer and Autumn 2015
Pages 31-44
  • Receive Date: 03 October 2014
  • Revise Date: 14 February 2015
  • Accept Date: 01 March 2015