New version of degree-based topological indices of certain nanotube

Document Type: Original Article


Department of Mathematics, Rani Channamma University, Belagavi - 591156, Karnataka, India


In this paper, computation of the Arithmetic-Geometric index (AG1 index), SK index, SK1 index and SK2 index of H-Naphtalenic nanotube and TUC4[m,n] nanotube. We also compute SK3 index, AG2 index for H-Naphtalenic nanotube and TUC4[m,n] nanotube.

Graphical Abstract

New version of degree-based topological indices of certain nanotube


[1] S. M. Adhikari, A. Sakar and K. P. Ghatak, Simple Theoretical Analysis of the Field Emission from Quantum Wire Effective Mass Superlattices of Heavily Doped Materials, Quantum Matter, 2 (2013)
[2] A. Bahramia and J. Yazdani, Padmakar-Ivan Index of H-Phenylinic Nanotubes and Nanotore, Di-gest Journal of Nanomaterials and Biostructures, 3 (2008) 265–267.
[3] P. K. Bose, N. Paitya, S. Bhattacharya, D. De, S. Saha, K. M. Chatterjee, S. Pahari and K. P. Ghatak, Influence of light waves on the effective electron mass in quantum wells, wires, inversion layers and superlattices, Quantum Matter, 1 (2012) 89–126.
[4] M. V. Diudea, I. Gutman and J. Lorentz, Molecular Topology, Nova Science Publishers, Hunting-ton, NY 2001.
[5] E. Estrada, L. Torres, L. Rodr ─▒guez and I Gutman, An atom-bond connectivity index: Modelling the enthalpy of formation of alkanes, Indian J Chem, 37A (1998) 849–855.
[6] K. P. Ghatak, S. Bhattacharya, A. Mondal, S. Debbarma, P. Ghorai and A. Bhattacharjiee, On the Fowler-Nordheim Field Emission from Quantum-Confined Optoelectronic Materials in the Pres-ence of Light Waves, Quantum Matter, 2 (1) (2013) 25–41.
[7] I. Gutman, Degree-based topological indices, Croat. Chem. Acta, 86 (2013) 251–361.
[8] I. Gutman and N. Trinajstic, Graph theory and molecular orbitals. Total -electron energy of alter-nant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535–538.

[9] F. Harary, Graph theory, Addison-Wesely, Reading mass, 1969.
[10] S. Hayat and M. Imarn, On Degree Based Topological Indices of Certain Nanotubes, J. Comput. Theor. Nanosci. 12 (8) (2015) 1–7.
[11] S. M. Hosamani, Computing Sanskruti index of Certain nanostructures, J. Appl. Math. Comput. (2016) 1–9.
[12] A. Khrennikov, ”Einstein’s Dream”-Quantum Mechanics as Theory of Classical Random Fields,
Rev. Theor. Sci. 1 (2013) 34–57.
[13] K. Lavanya Lakshmi, A highly correlated topological index for polyacenes, Journal of Experimen-tal Sciences, 3 (4) (2012) 18–21.
[14] A. Madanshekaf and M. Moradi, The first geometric-arithmetic index of some nanostar den-drimers, Iran. J. Math. chem. 5 (2014) 1–6.
[15] E. L. Pankratov and E. A. Bulaeva, Optimal Criteria to Estimate Temporal Characteristics of Diffu-sion Process in a Media with Inhomogenous and Nonstationary Parameters. Analysis of Influence of Variation of Diffusion Coefficient on Values of Time Characteristics, Rev. Theor. Sci. 1 (2013) 307–318.
[16] N. Paitya and K. P. Ghatak, Quantization and Carrier Mass, Rev. Theor. Sci. 1 (2013) 165–305.
[17] M. Randic, On Characterization of Molecular Branching, J. Am. Chem. Soc. 97 (23) (1975) 6609– 6615.
[18] V. S. Shegehalli and R. Kanabur, Arithmetic-Geometric indices of Some class of Graph, J. Comp. Math. Sci. 6 (4) (2015) 194–199.
[19] V. S. Shegehalli and R. Kanabur, Arithmetic-Geometric indices of Path Graph, J. Comp. Math. Sci. 6 (1) (2015) 19–24.
[20] V. S. Shegehalli and R. Kanabur, Computation of New Degree-Based Topologi-cal Indices of Graphene, Journal of Mathematics, Hindawi Publications, (2016)
[21] N.Trinajstic, Chemical Graph theory, CRC Press, Boca Raton, 1992.
[22] R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, 2000