On borderenergetic and L-borderenergetic graphs

Mardjan Hakimi-Nezhaad *

Department of Mathematics, Faculty of Science, Shahid Rajaee Teacher Training University, Tehran, 16785 - 136, I. R. Iran

Academic Editor: Mahin Songhori

Abstract. A graph G of order n is said to be borderenergetic if its energy is equal to $2n - 2$. In this paper, we study the borderenergetic and Laplacian borderenergetic graphs.

Keywords. energy (of graph), adjacency matrix, Laplacian matrix, signless Laplacian matrix.

1 Introduction

We first recall some definitions that will be kept throughout. Let G be a simple graph with n vertices and $m(G)$ edges, and $A(G)$ denotes its adjacency matrix. Let $L(G) = D(G) - A(G)$ and $Q(G) = D(G) + A(G)$ be the Laplacian and signless Laplacian matrix of the graph G, respectively, where $D(G) = [d_{ij}]$ is the diagonal matrix whose entries are the degree of vertices, i.e., $d_{ii} = \deg(v_i)$ and $d_{ij} = 0$ for $i \neq j$.

The energy of G is a graph invariant which was introduced by Ivan Gutman [6]. It is defined as $E(G) = \sum_{i=1}^{n} |\lambda_i|$, where λ_i's are eigenvalues of G. If $0 = \mu_1 \leq \mu_2 \leq \cdots \leq \mu_{n-1} \leq \mu_n$ and $q_1 \leq q_2 \leq \cdots \leq q_{n-1} \leq q_n$ are the Laplacian and signless Laplacian eigenvalues of G then the quantities $E_L(G) = \sum_{i=1}^{n} |\mu_i - \frac{2m(G)}{n}|$ and $E_Q(G) = \sum_{i=1}^{n} |q_i - \frac{2m(G)}{n}|$ are called the Laplacian and signless Laplacian energy of G, respectively. Details on the properties of Laplacian and signless Laplacian energy can be found in [6,8,13].

The first borderenergetic graph was discovered by Hou et al. in 2001 [11], but in that time it did not attract much attention. Recently, Gong et al in [5] studied the graphs with the same

*Corresponding author (Email address: m.hakiminezhaad@sru.ac.ir).
DOI: 10.22061/JMNS.2017.513
energy as a complete graph. They put forward the concept of borderenergetic graphs.

A graph G on n vertices is said to be borderenergetic if its energy equals the energy of the complete graph K_n, i.e., if $E(G) = E(K_n) = 2(n - 1)$. In [5], it was shown that there exist borderenergetic graphs on order n for each integer $n \geq 7$. The number of borderenergetic graphs were determined for $n = 7, 8, 9$ [5], $n = 10, 11$ [14, 12] and $n = 12$ [4].

In [12], a family of non-regular and non-integral borderenergetic threshold graphs was discovered. In [3], the authors obtained three asymptotically tight bounds on the number of edges of borderenergetic graphs. We refer the readers to [2, 15] for more information.

An analogous concept as borderenergetic graphs, called Laplacian borderenergetic graphs was proposed in [19]. That is, a graph G of order n is Laplacian borderenergetic or L-borderenergetic for short, if $E_L(G) = E_L(K_n) = 2n - 2$.

In [11], Deng et al. presented some asymptotically bounds on the order and size of L-borderenergetic graphs. Also, they showed that all trees, cycles, the complete bipartite graphs, and many 2-connected graphs are not L-borderenergetic. They showed in [2], a kind of threshold graphs are L-borderenergetic.

Lu et al. in [16] presented all non-complete L-borderenergetic graphs of order $4 \leq n \leq 7$ and they constructed one connected non-complete L-borderenergetic graph on n vertices for each integer $n \geq 4$, which extends the result in [20] and completely confirms the existence of non-complete L-borderenergetic graphs. Particularly, they proved that there are at least $\frac{n}{2} + 4$ non-complete L-borderenergetic graphs of order n for any even integer $n \geq 6$.

Hakimi-Nezhaad et al. in [10] generalized the concept of borderenergetic graphs for the signless Laplacian matrices of graphs. That is, a graph G of order n is signless Laplacian borderenergetic or Q-borderenergetic for short, if $E_Q(G) = E_Q(K_n) = 2n - 2$. Also, they constructed sequences of Laplacian borderenergetic non-complete graphs by means of graph operations, and all the non-complete and pairwise non-isomorphic L-borderenergetic and Q-borderenergetic graphs of small order n are depicted for n with $4 \leq n \leq 9$, see Appendix.

Tao et al. in [18] considered the extremal number of edges of non-complete L-borderenergetic graph, then use a computer search to find out all the L-borderenergetic graphs on no more than 10 vertices.

Main Results

Here, we present some basic theorem used to study borderenergetic and L-borderenergetic and Q-borderenergetic graphs.

Theorem 1.1. We have the following statements:

1) [5]. There are no borderenergetic graphs of order $n \leq 6$.

72
2) [5]. There exists a unique borderenergetic graph of order 7.

3) [5]. For any \(n \geq 7 \), there exist borderenergetic graphs of order \(n \).

4) [5]. There are exactly 6 borderenergetic graphs of order 8.

5) [5]. There are exactly 17 borderenergetic graphs of order 9.

6) [14, 17]. There are exactly 49 borderenergetic graphs of order 10.

7) [17]. There are exactly 158 borderenergetic graphs of order 11, of which 157 are connected.

8) [3]. There are exactly 572 connected borderenergetic graphs of order 12.

8) [5]. For each integer \(n \) (\(n \geq 13 \)), there exists a non-complete borderenergetic graph of order \(n \).

Theorem 1.2. [9]. A borderenergetic graph of order \(n \) must possess at least \(2n - 2 \) edges.

Theorem 1.3. [3]. Let \(G \) be a \(k \)-regular integral graph of order \(n \) with \(t \) non-negative eigenvalues. If \(E(G) = 2(n - t + k) \) then \(E(\tilde{G}) = 2(n - 1) \), where \(\tilde{G} \) is complement of graph \(G \).

Theorem 1.4. [15].

1) There is no non-complete borderenergetic graph with maximum degree \(\triangle = 2 \) or 3.

2) Let \(G \) be a non-complete borderenergetic graph of order \(n \) with maximum degree \(\triangle = 4 \). Then \(G \) must have the following properties:
 (i) \(e(G) = 2n \) or \(2n - 1 \);
 (ii) \(|G| \leq 21 \);
 (iii) \(G \) is non-bipartite;
 (iv) the nullity, i.e., the multiplicity of eigenvalue 0, of \(G \) is 0.

3) Let \(G \) be a \(4 \)-regular non-complete borderenergetic graph of order \(n \) and \(H \) is a maximal bipartite subgraph of \(G \). Then \(m(G) - m(H) \geq 3 \).

Theorem 1.5. [15]. No borderenergetic graphs have minimum degree \(n - 2 \). Besides, for each integer \(n \geq 7 \), there exists a connected noncomplete borderenergetic graph of order \(n \) with minimum degree \(n - 3 \) and for each even integer \(n \geq 8 \), there exists a noncomplete borderenergetic graph of order \(n \) with minimum degree \(n - 4 \).

Theorem 1.6. We have the following statements:

1) [11]. There are exactly two non-complete \(L \)-borderenergetic disconnected graphs of orders 4 and 5, respectively.

2) [11]. There are exactly five non-complete \(L \)-borderenergetic disconnected graphs of order 6.
3) [10]. There are exactly five non-complete L-borderenergetic disconnected graphs of order 7.

4) [18]. There are totally 18 L-borderenergetic connected graphs on less than 8 vertices.

5) [10, 18]. There are exactly 31 L-borderenergetic connected graphs and 27 disconnected graphs of order 8.

6) [10, 18]. There are exactly 16 L-borderenergetic graphs and 26 disconnected graphs of order 9.

7) [10, 18]. There are exactly 120 L-borderenergetic connected graphs on 10 vertices.

Theorem 1.7. [10] There is no Laplacian borderenergetic tree with $n \geq 3$ vertices.

Theorem 1.8. [1]. If G is a complete bipartite graph $K_{a,b}(1ab)$, then G is not L-borderenergetic.

Theorem 1.9. [1]. If G is a 2-connected graph with maximum degree $\Delta = 3$ and $t(G) \geq 7$ then G is not L-borderenergetic, where $t(G)$ the number of vertices of degree 3 in G.

Theorem 1.10. [10].

1) There are no non-complete Q-borderenergetic graph of order $n \leq 5$ and 7.

2) There are exactly two non-complete Q-borderenergetic of order 6.

3) There exist exactly fourteen non-complete Q-borderenergetic graphs of order 8.

4) There exist exactly sixteen non-complete Q-borderenergetic graphs of order 9.

References

Appendix

Figure 1. All Laplacian borderenergetic dis-connected graphs of order 4 and 5.

Figure 2. All Laplacian borderenergetic dis-connected graphs of order 6.

Figure 3. All Laplacian borderenergetic dis-connected graphs of order 7.
Figure 4. All Laplacian borderenergetic dis-connected graphs of order 8.
Figure 5. All Laplacian borderenergetic dis-connected graphs of order 9.