Computing Degree-Based Topological Indices of Polyhex Nanotubes

Document Type: Original Article

Authors

1 Rani Channamma University, Belagavi-591156, Karnataka, India.

2 RANI CHANNAMMA University, BELAGAVI-591156

Abstract

Recently, Shigehalli and Kanabur [20] have put forward for new degree based topological indices, namely Arithmetic-Geometric index (AG1 index), SK index, SK1 index and SK2 index of a molecular graph G. In this paper, we obtain the explicit formulae of these indices for Polyhex Nanotube without the aid of a computer.

Graphical Abstract

Computing Degree-Based Topological Indices of Polyhex Nanotubes

Keywords


[1] A. R. Ashrafi and H. Shabani, GA index and Zagreb indices of nanocones, Optoelectron. Adv. Mater-Rapid Common. 4 (11) (2010) 1874–1876.

[2] M. V. Diudea, I. Gutman and J. Lorentz, Molecular Topology, Nova Science Publishers, Huntington, NY 2001.

[3] M. R. Farahani, Computing some connectivity indices of Nanotubes, Adv. Mater. Corrosion, 1 (2012) 57–60.

[4] I. Gutman, Degree-based topological indices, Croat. Chem. Acta, 86 (2013) 251–361.

[5] F. Harary, Graph theory, Addison-Wesely, Reading mass, 1969.

[6] S. M. Hosamani and B. Basavanagoud, New upper bounds for the first Zagreb index, MATCH Commun. Math. Comput. Chem. 74 (1) (2015) 97–101.

[7] S. M. Hosamani, Computing Sanskruti index of Certain nanostructures, J. Appl. Math. Comput. (2016) 1–9.

[8] S. M. Hosamani and I. Gutman, Zagreb indices of transformation graphs and total transformation graphs, Appl. Math. Comput. 247 (2014) 1156–1160.

[9] S. M. Hosamani, S. H. Malaghan and I. N. Cangul, The first geometric-arithmetic index of graph operations, Advances and Applications in Mathematical Sciences, 14 (6) (2015) 155–163.

[10] N. Idrees, A. Sadiq, M. J. Saif and A. Rauf, Augmented Zagreb Index of Polyhex Nanotubes, (2016) rXiv:1603.03033 [match.Co].

[11] A. Khaksar, M. Ghorabani and H. R. Maimani, On atom bond connectivity and GA indices of nanocones, Optoelectron. Adv. Mater-Rapid Common. 4 (11) (2010) 1868–1870.

[12] K. Lavanya Lakshmi, A highly correlated topological index for polyacenes, Journal of Experimental Sciences, 3 (4) (2012) 18–21.

[13] A. Madanshekaf and M. Moradi, The first geometric-arithmetic index of some nanostar dendrimers, Iran. J. Math. chem. 5 (2014) 1–6.

[14] N. K. Raut, Degree Based Topological Indices of Isomers of Organic Compounds, International Journal of scientific and Research Publications, 4 (8) (2014) 1–4.

[15] V. S. Shegehalli and R. Kanabur, Arithmetic-Geometric indices of Some class of Graph, J. Comp. Math. Sci. 6 (4) (2015) 194–199.

[16] V. S. Shegehalli, R. Kanabur, New Version of Degree-Based Topological Indices of Certain nanotube, J. Math. anosci. 6 (1) (2016) 29–42.

[17] V. S. Shegehalli and R. Kanabur, Arithmetic-Geometric indices of Path Graph, J. Comp. Math. Sci. 6 (1) (2015) 19–24.

[18] G. Sridhar, M. R. Rajesh Kanna and R. S. Indumathi, Computation of Topological Indices of Graphene, Hindawi Publishing Corporation Journal of Nanomaterials, (2015) 1–8.

[19] N. Trinajstic, Chemical Graph theory, CRC Press, Boca Raton, 1992. 

[20] D. Vukicevic and B. Furtula, Topological index based on the ratios of geometrical and arithmetical mean of end- ertex degrees of edges, J. Math. Chem. 26 (2009) 1369–1376.


Volume 6, Issue 1
Winter and Spring 2016
Pages 47-55
  • Receive Date: 12 August 2016
  • Revise Date: 08 September 2016
  • Accept Date: 08 September 2016