On the edge energy of some specific graphs

Document Type: Original Article


Department of Mathematics, Yazd University, 89195-741, Yazd, Iran


Let G = (V,E) be a simple graph. The energy of G is the sum of absolute values of the eigenvalues of its adjacency matrix A(G). In this paper we consider the edge energy of G (or energy of line of G) which is defined as the absolute values of eigenvalues of edge adjacency matrix of G. We study the edge energy of specific graphs.

Graphical Abstract

On the edge energy of some specific graphs


Main Subjects

[1] A. Abdollahi, S. Janbaz, M.R. Oboudi, Graphs cospectral with a friendship graph or its comple-ment, Trans. Comb. 2 (4) (2013) 37–52.
[2] S. Alikhani and N. Ghanbari, Randi´c energy of specific graphs, Appl. Math. Comput. 269 (2015)722–730.
[3] S. B. Bozkurt, D. Bozkurt, On Incidence Energy, MATCH Commun. Math. Comput. Chem. 72 (2014) 215–225.
[4] S. B. Bozkurt, D. Bozkurt, Sharp Upper Bounds for Energy and Randic Energy, MATCH Commun. Math. Comput. hem. 70 (2013) 669–680.
[5] S. B. Bozkurt, I. Gutman, Estimating the Incidence Energy, MATCH Commun. Math. Comput. Chem. 70 (2013) 143–156.
[6] F. Buckley, Iterated line graphs, Congr. Numer. 33 (1981) 390–394.
[7] F. Buckley, The size of iterated line graphs, Graph Theory Notes N. Y. 25 (1993) 33–36.
[8] L. Chen, Y. Shi, Maximal matching energy of tricyclic graphs, MATCH Commun. Math. Comput. Chem. 73(2015) 105–119.
[9] D. M. Cvetkovi´c, M. Doob, H. Sachs, Spectra of graphs, Theory and application, Academic Press, 1980.
[10] K. C. Das, I. Gutman, A.S. Cevik, B. Zhou, On Laplacian Energy, MATCH Commun. Math. Com-put. Chem. 70 (2013) 689–696.
[11] K. C. Das, S. A. Mojallal, I. Gutman, Improving McClelland’s lower bound for energy, MATCH Commun. Math. omput. Chem. 70 (2013) 663–668.
[12] P. Erd¨ os, A. R´enyi, V.T. S´ os, On a problem of graph theory, Studia Sci. Math. Hungar. 1 (1966) 215–235.
[13] R. Frucht and F. Harary, On the corona of two graphs, Aequationes Math. 4 (1970) 322–324.
[14] I. Gutman, M. Robbiano, E. Andrade Martins, D.M. Cardoso, L. Medina, O. Rojo, Energy of line graphs, Lin. Algebra Appl. 433 (2010) 1312–1323.
[15] I. Gutman, The energy of a graph: Old and new results, in: A. Betten, A.Kohnert, R. Laue, A. Wassermannn (Eds.), Algebraic Combinatorics and Applications, Springer-Verlag, Berlin, 2001, pp. 196–211.
[16] I. Gutman, Topology and stability of conjugated hydrocarbons. The dependence of total p-electron energy on molecular topology, J. Serb. Chem. Soc. 70 (2005) 441–456.
[17] I. Gutman, X. Li, J. Zhang, Graph energy, in: M. Dehmer, F. Emmert-Streib (Eds.), Analysis of Complex Networks. From Biology to Linguistics,Wiley-VCH,Weinheim, 2009, pp. 145–174.
[18] F. Harary, Graph Theory, Addison-Wesley, Reading, 1969 (Chapter 8).
[19] S. Ji, X. Li, Y. Shi, Extremal matching energy of bicyclic graphs, MATCH Commun. Math. Comput. Chem. 70 (2013) 697–706.
[20] H. H. Li, Y.X. Zhou, L. Su, Graphs with extremal matching energies and prescribed Parameters, MATCH Commun. Math. Comput. Chem. 72 (2014) 239–248.
[21] S. Ramane, H.B.Walikar, S. B. Rao, B. D. Acharya, P. R. Hampiholi, S. R. Jog, I. Gutman, Spectra and energies of iterated line graphs of regular graphs, Appl. Math. Lett. 18 (2005) 679–682.
[22] X. Li, Y. Shi, A survey on the Randi´c index, MATCH Commun. Math. Comput. Chem. 59 (1) (2008) 127–156.
[23] H. Liu, M. Lu and F. Tian, Some upper bounds for the energy of graphs, J. Math. Chem. 41 (1) (2007) 45–57.
[24] J. Zhu, On minimal energies of unicyclic graphs with perfect matching, MATCH Commun. Math. Comput. Chem. 70 (2013) 97-118.


Volume 7, Issue 1
Winter and Spring 2017
Pages 15-21
  • Receive Date: 21 September 2016
  • Revise Date: 09 October 2016
  • Accept Date: 09 October 2016