The second eccentric Zagreb index of the $N^{TH}$ growth of nanostar dendrimer $D_{3}[N]$

Document Type: Original Article


1 Department of Applied Mathematics, Iran University of Science and Technology (IUST), Narmak, Tehran 16844, Iran

2 Department of Mathematics, COMSATS Institute of Information Technology, Attock Campus, Pakistan

3 Department of Mathematics, University of Sargodha, Mandi Bahauddin Campus, Mandi Bahauddin Pakistan


Let G = (V,E) be an ordered pair, where V(G) is a non-empty set of vertices and E(G) is a set of edges called a graph. We denote a vertex by v, where v 2 V(G) and edge by e, where e = uv 2 E(G). We denote degree of vertex v by dv which is defined as the number of edges adjacent with vertex v.  The distance between two vertices of G is the length of a shortest path connecting these two vertices which is denoted by d(u,v) where u,v 2 V(G). The eccentricity ecc(v) of a vertex v in G is the distance between vertex v and vertex farthest from v in G. In this paper, we consider an infinite family of nanostar dendrimers and then we compute its second eccentric Zagreb index. Ghorbani and Hosseinzadeh introduced the second eccentric Zagreb index as EM2(G) = åuv2E(G) (ecc(u)  ecc(v)),that ecc(u) denotes the eccentricity of vertex u and ecc(v) denotes the eccentricity of vertex v of G.

Graphical Abstract

The second eccentric Zagreb index of the $N^{TH}$ growth of nanostar dendrimer $D_{3}[N]$


Main Subjects

[1] O. Adisa, B. J. Cox, J. M. Hill, Modelling the surface adsorption of methane on carbon nanostruc-tures, Carbon, 49 (10) (2011) 3212–3218.
[2] A. R. Ashrafi, M. Mirzargar, PI, Szeged, and edge Szeged indices of an infinite family of nanostar dendrimers, Indian J. Chem. 47A (2008) 538–541.
[3] A. R. Ashrafi and P. Nikzad, Connectivity index of the family of dendrimer nanostars, Digest. J. Nanomater. Bios. 4 (2) (2009) 269–273.
[4] A. R. Ashrafi and P. Nikzad, Kekule index and bounds of energy for nanostar dendrimers, Digest. J. Nanomater. Bios. 4 (2) (2009) 383–388.
[5] S. Alikhani, M. A. Iranmanesh, Chromatic polynomials of some dendrimers, J. MATCH Commun. Math. Comput. Chem. 62 (2009) 363–370.
[6] S. Alikhani, M. A. Iranmanesh, Chromatic polynomials of some dendrimers, J. Comput. Theor. Nanosci. 7 (11) (2010) 2314–2316.
[7] S. Alikhani, M. A. Iranmanesh, Chromatic polynomials of some nanostars, Iranian Journal of Math. Chemist. 3 (2) (2010) 127–135.
[8] S. Alikhani, M. A. Iranmanesh, Eccentric connectivity polynomials of an infinite family of den-drimers, Digest. J. Nanomater. Bios. 6 (1) (2011) 256–257.

[9] G. Chartrand, P. Zhang, Introduction to Graph Theory, Tata Mcgraw-Hill Edition.
[10] M. Eliasi, B. Taeri, Szeged index of armchair polyhex nanotubes, MATCH Commun. Math. Com-put. Chem. 59 (2008) 437–450.
[11] M. R. Farahani, Fourth atom-bond connectivity index of an infinite class of nanostar dendrimer D3[n], Journal of Advances in Chemistry, 4 (1) (2013) 301–305.
[12] M. R. Farahani, Computing fifth geometric-arithmetic index of dendrimer nanostars, Advances in Materials and Corrosion. 1 (2013) 62–64.
[13] M. R. Farahani, Some connectivity index of an infinite class of dendrimer nanostars, Journal of Applied Physical Science International, 3 (3) (2015) 99–105.
[14] M. R. Farahani, The second Zagreb eccentricity index of polycyclic aromatic hydrocarbons PAHK, Journal of Computational Methods in Molecular Design, 5 (2) (2015) 115–120.
[15] M. Ghorbani and M. A. Hosseinzadeh, A new version of Zagreb indices, Filomat, 26 (1) (2012) 93–100.
[16] M. Golriz, M. R. Darafsheh, M.H. Khalifeh, The Wiener, Szeged and PI-indices of a phenylazome-thine dendrimer, Digest. J. Nanomater. Bios. 6 (4) (2011) 1545–1549.
[17] I. Gutman, N. Trinajsti´c, Graph theory and molecular orbitals. III. Total p-electron energy of alter-nant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535–538.
[18] I. Gutman, K. C. Das, The first zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50 (2004) 83–92.
[19] Y. Gao, W. Gao, L. Liang, Certain general Zagreb indices and Zagreb polynomials of molecular graphs, International Journal of Chemical and Biomolecular Science. 1 (1) (2015)1–5.
[20] A. Heydari, B. Taeri. Szeged index of armchair polyhex nanotubes, MATCH Commun Math Com-put Chem, 57, 463 (2007).
[21] N. M. Husin, R. Hasni, N. E. Arif, Atom-bond connectivity and geometric-arithmetic indices of dendrimer nanostars, Australian Journal of Basic and Applied Sciences, 7(9) (2013) 10–14.
[22] A. Karbasioun and A. R. Ashrafi.Wiener and detour indices of a new type of nanostar dendrimers, Macedonian journal of chemistry and chemical engineering, 28 (1) (2009) 49–54.
[23] S. Iijima, Helical microtubules of graphitic carbon, Nature, 354 (1991) 56–58. doi:10.1038/354056a0
[24] X. Li, Y. Shi, A survey on the Randic index, MATCH Commun. Math. Comput. Chem. 59 (1) (2008) 127–156.

[25] G. R. Newkome, C. N. Moorefield and F. V¨ ogtle, Dendrimer and dendrons, concepts, syntheses, applications, Vol. 623.Weinheim: Wiley-vch, (2001).

[26] S. Nikoli´c, G. Kovaˇcevi´c, A. Miliˇcevi´c and N. Trinajsti´c, The Zagreb indices 30 years after, Croat. Chem. Acta, 76 (2003) 113–124.
[27] V. Sharma, R. Goswami, A. K. Madan, Eccentric connectivity index, A novel highly discriminating topological descriptor for structure-property and structure-activity studies, J. Chem. Inf. Comput. Sci. 37 (1997) 273–282.
[28] R. Todeschini and V. Consonni, Handbook of molecular descriptors, Wiley-VCH, Weinheim, (2000). doi:10.1002/9783527613106
[29] D. Vukiccevic, B. Furtula, Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges, J. Math. Chem. 46 (2009) 1369–1376.
[30] S.Wang, B.Wei, Multiplicative Zagreb indices of k-trees, Discrete Appl. Math, 180 (2015) 168–175.
[31] Y. Zhai, J. B. Liu, S. Wang, Structure properties of Koch networks based on networks dynamical systems, Complexity, 2017 (2017).
[32] J. Zhao, A. Buldum, J. Han, J. P. Lu, Gas molecule adsorption in carbon nanotubes and nanotube bundles. Nanotechnology, 13 (2002) 195–200.