Strong chromatic index of certain nanosheets

Document Type: Original Article

Authors

1 School of Advanced Sciences

2 VIT University, Chennai-600127

Abstract

Strong edge-coloring of a graph is a proper edge coloring such that every edge of a path of length 3 uses three different colors. The strong chromatic index of a graph is the minimum number k such that there is a strong edge-coloring using k colors and is denoted by c′ s(G). We give efficient algorithms for strong edge-coloring of certain nanosheets using optimum number of colors.

Graphical Abstract

Strong chromatic index of certain nanosheets

Keywords

Main Subjects


[1] A. R. Ashrafi, T. Doslic, M. Saheli, The ecentric connectivity of ´ TUC4C8(R) nanotubes, MATCH Communications in Mathematical and in Computer Chemistry, 65 (2011) 221–230.

[2] A. T. Balaban, Applications of graph theory in chemistry, Journal of Chemical Information and Computer Sciences, 25 (1985) 334–343.

[3] K. Balasubramanian, Graph edge colorings and their chemical applications, Theoretical Chemistry Accounts, 74 (1988) 111–222.

[4] L. W. Beineke and R. J. Wilson, On the edge-chromatic number of a graph, Discrete Mathematics, 5 (1973) 15–20.

[5] M. J. Bialek, J. Janczak and J. Zon, Naphthalene-based linkers for metal phosphonates: synthesis, structure, and interesting conformational flexibility influence on final lanthanum hybrids, CrystEngComm, 15 (2013) 390–399.

[6] J. A. Bondy and U.S.R. Murty, Graph theory with Applications. London: MacMillan, 1976.

[7] G. J. Chang, S. H. Chen, C. Y. Hsu, C. M. Hung and H. L. Lai, Strong edge-coloring for jellyfish graphs, Discrete Mathematics, 338 (12) (2015) 2348–2355.

[8] D. W. Cranston, Strong edge-coloring of graphs with maximum degree 4 using 22 colors, Discrete Mathematics, 306 (2006) 2772–2778.

[9] J. L. Fouquet and J. L. Jolivet, Strong edge-colorings of graphs and applications to multi-k-gons, Ars Combinatoria, 16A (1983) 141–150.

[10] T. A. Fozan, P. Manuel, I. Rajasingh and R. S. Rajan, Computing Szeged Index of Certain Nanosheets Using Partition Technique, MATCH Communications in Mathematical and in Computer Chemistry, 72 (2014) 339–353.

[11] A. Graovac, I. Gutman, M. Randi ´ c and N. Trinajsti ´ c, Kekul ´ e index for valence bond structures of ´ conjugated polycyclic systems, Journal of the American Chemical Society, 95 (1973) 6267–6273.

[12] J. E. Graver and E. J. Hartung, Kekulean benzenoids, Journal of Mathematical Chemistry, 52 (2014)  977–989.

[13] I. Gutman, B. Arsic, M. Deni ´ c and I. Stojanovi ´ c, Benzenoid isomers with greatest and smallest ´ Kekule structure counts, Journal of the Serbian Chemical Society, 71 (7) (2006) 785–791. ´

[14] I. Gutman and O. Polansky, Mathematical Concepts in Organic Chemistry, Springer-Verlag, Berlin, 1986.

[15] M. Huhtala, A. Kuronen and K. Kaski, Carbon nanotube structures: molecular dynamics simulation at realistic limit, Computer Physics Communications, 146 (1) (2002) 30–37.

[16] A. V. Karzanov and E. A. Timofeev, Efficient algorithm for finding all minimal edge cuts of a nonoriented graph, Cybernetics, 22 (1986) 156–162.

[17] M. Mahdian, On the computational complexity of strong edge coloring Discrete Applied Mathematics, 118 (2002) 239–248.

[18] P. Manuel, I. Rajasingh, B. Rajan and A. S. Shanthi, Excessive Index of certain chemical structures, International Journal of Pure and Applied Mathematics, 84 (2013) 39–48.

[19] P. Manuel, I. Rajasingh, B. Rajan and R. S. Rajan . A New Approach To Compute Wiener Index, Journal of Computational and Theoretical Nanoscience, 10 (2013) 1515–1521.

[20] I. Moffatt, Unsigned State Models for the Jones Polynomial, Annals of Combinatorics, 15 (2011) 127–146.

[21] S. Tang and H. Deng, On the anti-kekule number of three fence graphs, Digest Journal of Nano-  materials and Biostructures, 6 (2011) 439–443.

[22] A. Turchanin, A. Beyer, C. T. Nottbohm, X. Zhang, R. Stosch, A. Sologubenko, J. Mayer, P. Hinze, T. Weimann and A. Golzh ¨ auser, One nanometer thin carbon nanosheets with tunable conductivity ¨ and stiffness, Advanced Materials, 21 (2009) 1233–1237.


Volume 7, Issue 1
Winter and Spring 2017
Pages 29-38
  • Receive Date: 01 September 2017
  • Revise Date: 03 October 2017
  • Accept Date: 08 November 2017