Study of inverse sum indeg index

Document Type: Note

Author

Departmnet of Mathematics, SRTT University

Abstract

Let $MG(i,n)$ $(1\leq  i \leq 3)$ denote to the class of all $n$-vertex molecular graphs with minimum degree $ i$.  The  inverse  sum  indeg  index of   a   graph  is   defined   as    $ISI=\sum_{uv\in E(G)}  d_ud_v/(d_u+d_v)$,   where $ d_{u}$ denotes to the degree of vertex $ u$. In this paper, we propose some extremal molecular graphs with the minimum and the maximum value of inverse sum indeg index in $MG(i,n)$.

Graphical Abstract

Study of inverse sum indeg index


  1. R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, 2000.
  2. H. Wiener, Structural determination of the paraffin boiling points, J. Am. Chem. Soc. 69 (1947) 17–20.
  3. N. Trinajstić, Chemical Graph Theory, 2nd revised edn, CRC Press, Boca Raton, FL, 1992.
  4. A. Khaksari and M. Ghorbani, On the forgotten topological index, Iranian J. Math. Chem. 8(3) (2017) 327-338.
  5. M. Ghorbani and M. Songhori, Computing Wiener index of C12n fullerenes, Ars Combin. 130 (2017) 175-180.
  6. M. Ghorbani and M. Hakimi-Nezhaad, An algebraic study of non-classical fullerenes Fullerenes, Nanotubes and Carbon Nanostructures 24 (2016) 385-390.
  7. M. Ghorbani and S. Klavžar, Modified Wiener index via canonical metric representation, and some fullerene patches, Ars Mathematica Contemporanea 11 (2015) 247-254.
  8. P. Padmapriya, Some topological indices of fluorographene, J. Math. Nanosci. 6 (2016) 1-16.
  9. R. R. Kanabur and V. S. Shigehalli, Computing Degree-Based Topological Indices of Polyhex Nanotubes, J. Math. Nanosci. 6 (2016) 47-55.
  10.  J. Sedlar, D. Stevanović, A. Vasilyevć, On the inverse sum indeg index of graphs, Discret Applied Mathematics 184(2015)202–212.
  11. D. Vukičević, M. Gašperov, Bond additive modelling 1. Ariatic indices, Croat. Chem. Acta 83 (2010) 243–260.