DFT studies of functionalized carbon nanotubes as nanoadsorbent of a benzimidazole fungicide compound

Document Type: Original Article

Authors

1 Department of Chemistry, Faculty of Science, Shahid Rajaee teacher Training University

2 Shahid Rajaee Teacher Training University

Abstract

Using density functional theory calculations, we investigated properties of a functionalized carbon nanotube with one mercarzole molecule as a benzimidazole fungicide. Three different configurations are possible depending on the type of functional group used in the structure of mercarzole. We investigated different electronic properties for these configurations such as adsorption energy, band gap energy and charge transfer effects. As a consequence of structural properties the adsorption height and the most stable adsorption configuration are also discussed. It has been found that a mercarzole molecule is adsorbed on the tube surface with adsorption energies in the range of −0.01 to −0.67 eV, and their relative magnitude order is found as follows: imin group > ester group > amin group. Obtained results reveal important features of the adsorption mechanism of mercarzole molecules onto the functionalized carbon nanotubes. This study can be used in farming researches in order to improving cultivation and wellbeing human.

Graphical Abstract

DFT studies of functionalized carbon nanotubes as nanoadsorbent of a benzimidazole fungicide compound

Keywords

Main Subjects


[1] A. Ahmadi Peyghan, H. Soleymanabadi and Z. Bagheri, First principles study of H2O and NH3
adsorption on the pristine and B-doped Al12N12 nanocluster, Iranian J. Sci. Technol. 39A4 (2015)
4-85.
[2] S. Iijima, Helical microtubules of graphitic carbon, Nature 354 (1991) 56.
[3] M. S. Dresselhaus, G. Dresselhaus and Ph. Avouris, Carbon nanotubes: synthesis, structure, prop-
erties, and applications, (Springer Verlag, Berlin, 2001).
[4] S. Ciraci, S. Dag, T. Yildirim, O. G¨ ulseren and R. T. Senger, Functionalized carbon nanotubes and
device applications, J. Phys.: Condens. Matter. 16 (2004) R901.
[5] J. Beheshtian, A. Ahmadi Peyghan and Z. Bagheri, Carbon nanotube functionalization with car-
boxylic derivatives: a DFT study, J Mol Model 19 (2013) 3-91.
[6] A. Veneziano, G. Vacca, S. Arana, F. De Simone and L. Rastrelli, Determination of carbendazim,
thiabendazole and thiophanate-methyl in banana (Musa acuminate) samples imported to Italy,
Food Chem 87 (2004) 3-83.
[7] P. Hernandez, Y. Ballesteros, F. Galan and L. Hernandez, Determination of carbendazim with the
grapyite electrode modified with silicone OV-17, Electroanalysis 8 (1996) 9-41.
[8] Y. Guo, Shaojun Guo, Jing Li , Erkang Wang and Shaojun Dong, Cyclodextringraphene hybrid
nanosheets as enhanced sensing platform for ultrasensitive determination of carbendazim, Talanta
84 (2011) 60.
[9] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti,
M. Cococcioni, I. Dabo, A. D. Corso, S. D. Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann,
C. Gougoussis, A. Kokalj, M. Lazzeri, L. M. Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini,
A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov,
P. Umari and R. M. Wentzcovitch, QUANTUM ESPRESSO: a modular and open-source software
project for quantum simulations of materials, J. Phys.: Condens. Matter. 21 (39) (2009) .
[10] J. P. Perdew, K. Burke and M. Ernzerhof, Generalized Gradient Approximation made simple, Phys.
Rev. Lett. 77 (1996) 38-65.
[11] H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B: Con-
dens. Matter Mater. Phys. 13 (1976) 51-88.
17
M. Ghalkhani et al. / Journal of Mathematical Nanoscienese 8 (2018) 13–18
[12] G. Makov and M.C. Payne, Periodic boundary conditions in ab initio calculations, Phys. Rev. B. 51
(1995) 10-14.
[13] W. Zhu and E. Kaxiras, Electronic structure of Pd-covered (10, 0) carbon nanotube, Phys. Stat. Sol.
(b). 243 (2006) 21-64.
18