Some GAP programs for computing the topological indices

Document Type: Original Article

Author

Department of Mathematics, Faculty of Science, Shahid Rajaee Teacher Training University

Abstract

A topological index is a numerical invariant associated with a chemical graph. In this
paper we introduce some GAP programs for computing well-known topological indices.

Graphical Abstract

Some GAP programs for computing the topological indices

Keywords

Main Subjects


Phys. Lett. 89
(1982) 399–404.
[4] A. T. Balaban, Topological indices based on topological distances in molecular graphs, Pure Appl.
Chem. 55 (1983) 199–206.
[5] M. V. Diudea, G. Katona, I. Lukovitz and N. Trinajstic, Croat. Chem. Acta, 71 (1998), 459-471.
[6] T. Doˇsli´c, A. Graovac, O. Ori, Eccentric connectivity indices of hexagonal belts and chains,MATCH
Commun. Math. Comput. Chem. to appear.
[7] T. Doˇsli´c and M. Saheli, Eccentric connectivity index of composite graphs, submitted.
[8] P.W. Fowler, D. E. Manolopoulos, An Atlas of Fullerenes, Oxford Univ. Press, Oxford, 1995.
[9] M. Ghorbani and T. Ghorbani, Computing theWiener index of an infinite class of fullerenes, Studia
Ubb Chemia 58 (2013) 43–50.
[10] M. Ghorbani, Computing Wiener index of C24n fullerenes, J. Comput. Theor. Nanosci. 12 (2015)
1847–1851.
[11] M. Ghorbani and M. Songhori, ComputingWiener index of C12n fullerenes, Ars Combin. 130 (2017)
175–180.
[12] I. Gutman, A. A. Dobrynin, The Szeged index-a success story, Graph Theory Notes N. Y. 34 (1998) 37–44.
[13] I. Gutman and J. H. Potgieter,Wiener index and intermolecular forces, J. Serb. Chem. Soc. 62 (1997)
185–192.
[14] I. Gutman, Y. N. Yeh, S. L. Lee and Y. L. Luo, Some recent results in the theory of the Wiener
number, Indian J. Chem. 32A (1993) 651–661.

[15] S. Gupta, M. Singh and A. K. Madan, Application of graph theory: Relationship of eccentric con-
nectivity index andWiener’s index with anti-inflammatory activity, J. Math. Anal. Appl. 266 (2002)
259–268.
[16] P. V. Khadikar, On a novel structural descriptor, PL. Nat. Acad. Sci. Lett 23 (2000) 113–118.
[17] P. V. Khadikar and S. Karmarkar, On the estimation of PI index of polyacenes, Acta Chim. Slov. 49
(2002) 755–771.
[18] P. V. Khadikar, S. Karmarkar and V. K. Agrawal, Relationships and relative correlation potential of
theWiener, Szeged and PI indices, Nat. Acad. Sci. Lett. 23 (2000) 165–170.
[19] H.W. Kroto, J. E. Fichier, D. E. Cox, ”The Fullerene”, Pergamon Press, Inc., New York, 1993.
[20] V. Kumar and A. K. Madan, Application of graph theory: Prediction of cytosolic phospholipase
A2 inhibitory activity of propan-2-ones, J. Math. Chem. 39 (2006) 511–521.
[21] V. Lather, A. K. Madan, Application of graph theory: Topological models for prediction of CDK-1
inhibitory activity of aloisines, Croat. Chem. Acta 78 (2005) 55–61.
[22] S. Sardana, A. K. Madan, Application of graph theory: Relationship of molecular connectivity
index, Wiener’s index and eccentric connectivity index with diuretic activity, MATCH Commun.
Math. Comput. Chem. 43 (2001) 85–98.
[23] M. Schonert, et al., GAP, Groups, Algorithms and Programming, Lehrstuhl De fur Mathematik,
RWTH, Aachen, 1995.
[24] V. Sharma, R. Goswami and A. K. Madan, Eccentric connectivity index: A novel highly discrim-
inating topological descriptor for structure-property and structure-activity studies, J. Chem. Inf.
Comput. Sci. 37 (1997) 273–282.
[25] S. Nikoli´c, N. Trinajsti´c and Z. Mihali´c, The Wiener index: developments and applications, Croat.
Chem. Acta 68 (1995) 105–129.
[26] H.Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc. 69 (1947) 17–20.